
to its hardening under the influence of shock compression and the potential for the revers- 
ible growth of discontinuities during dynamic tension. 

We thank V. ~. Zgaevskii and V. K. Golubev for their discussion of the findings. 
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MOVEMENT OF THE FREE BOUNDARY OF A HALF-SPACE DURING THE PROPAGATION 

OF AN OBLIQUE STRAIGHT CRACK 

V. A. Saraikin UDC 539.375 

Internal defects which grow dynamically in a material generate disturbances. The elastic 
model of the propagation of a dislocational discontinuity [1-4] is widely used in geophysics 
to identify the type, orientation, and size of large-scale defects - earthquake foci [1-4]. 
In accordance with this model, a jump in the displacement vector is assigned at the site of 
the discontinuity to describe the advance of the edges of the latter. This description is 
independent of the details of the distribution of the initial internal stress field. The 
orientation of the nodal planes found by this approach agrees poorly with experimental find- 
ings when the discontinuity is of the shear type. When an appropriate choice is made for 
the jumps in the displacements, the asymptote of the solution in the long-range field for 
a dislocational discontinuity differs little from the solution of the problem for a point 
source given by force couples without moments. 

A method of describing a discontinuity (crack) which is exact within the framework of 
linear fracture mechanics involves specifying a drop in stress on the discontinuity [2]. The 
displacement field and the orientation and size of the crack in this model are consistent 
with the stress field, which itself conforms to the condition of dynamic instability at the 
crack tip. 
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Here, we examine a two-dimensional problem in a formulation which takes advantage of 
some of the features of the crack model mentioned above. 

We will examine a half-space y < h (Fig. i) with a boundary which is free of loads. 
We will assume that a crack is initiated at a point located the distance h from the boundary 
at the moment of time t = 9. The crack then propagates in a straight line at the angle 
to the boundary: -v:t < X < v2t , Y = 0 (X and Y are rectangular coordinates connected with 
the crack). It is assumed that the velocities of the tips of the crack are different but 
constant and less than the velocity of the Rayleigh wave (v i < CR). 

The appearance of the crack inside the half-space is connected with the existence of 
stresses in the latter. The nature of the stresses may vary - they may be due not only to the 
weight of the material but also to internal disturbances or compression at infinity parallel 
to the boundary of the half-space. We will assume that shear stresses initially exist on 
the line of crack growth. These stresses can be approximated by the relation 

q x y ( X ,  O) = ~,t~ (n  = O~ t ,  2 . . . .  , Tn ~ = c o n s t )  

or by a linear combination of terms of this form. 

Formation of the crack leads to partial or complete dynamic relief of the shear stresses 
at the edges. We first find the displacements in the wave generated by the crack. Before 
waves arrive at the boundary, the half-space can be considered an unbounded medium. Due to 
the symmetry of the shear stresses relieved by the crack, the problem reduces to the solution 
of an auxiliary problem concerning a half-space with conditions which ensure that the sought 
solution has the property of similarity. These conditions are 

~y( t ,  X~ O) = - ~ X  ~ ( - v l t  < X < v~t), 

u(t, X, o) = o (x:~< - ~ t ,  x >~ ~t), ( : )  

%~(t, x ,  o) = o ( -oo  < x < ~ ) .  

Here, U is a component of the displacement vector U = (U, V) in the coordinate system X, Y. 
Triviality of the normal stress ay means that the initial compression in the weighable half- 
space perpendicular to the crack growth line is assumed to be unchanging. Zero initial condi h 
tions are adopted. 

Of course, this formulation does have shortcomings: i) the motion of the crack tips is 
assigned rather than being determined from a fracture criterion; 2) a similarity formula- 
tion restricts the number of ways the stress relief can be specified and does not permit al- 
lowance for the contribution of body waves to the solution. This contribution is important 
if the growth of an initial defect of finite length is being examined. These restrictions 
are justified partly by the fact that the solution can be subjected to fairly thorough analy- 
sis. 

In the solution of problem (i) in [5, 6], the displacement of the edges of the crack 
are found from the formulas 

t 

. . . .  

= [ ~  ~ - -  ztt / (~)  dB  + 
- - v  I 
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[ Aj j} + i ~ ( - - t l z /  (~+~//~/+~ + ( i -%t / , /+~  ' z = X + i ~ l ,  
j=0 

n on-t- 1 
1(~) = -  "~tZ ~ [H (v~t + X) H (v2t - X)] Ix=~t, (2 )  

�9 ~ VF-2 a~ 

where a a and a 2 are the inverses of the velocities of the rarefaction and shear waves; H(...) 
is the Heaviside function. 

Equations (i) make it possible to reduce the problem of determining the waves generated 
by the crack to the solution of an unmixed problem. In fact, on the crack line (Y = 0), the 
jump in the displacements and the stresses are equal [U] = 2U0(t, X), IV] = [Oyy] = [Oxy] = 
0. It follows from this that the displacement U is antisymmetric, while V is symmetric re- 
lative to the crack line. Thus, the displacements outside the crack can be found by com- 
bining the solutions of the two problems for the upper (Y > 0) and lower half-spaces with the 
boundary conditions 

U(t, X,-CO) = • Uo(t, X), %~(t, X, O) = O. 

Using a Laplace transform in t and a Fourier transform along X, we find the LF-trans- 
forms of the displacements in the wave coming from the crack 

Vl~'(%sp, y )  = .:_ .w (p) [2p2e-,n~,y, (n~ + p2) e-~%lr,]  sgn(Y)  ' 
a~s n+3 

vLY ls  , , sp, Y ) =  ipw(p)a~sn+3 [2nln2e - ` n l l Y ' -  (n~ @ p2) eY-s%lzl], 
(3) 

n~ (p) = a~ 4- pZ. 

Here, s and sp are parameters of the Laplace and Fourier transforms, respectively; s-n-aw(p) 
is the transform of the displacement of an edge of the crack U0(t, X). 

The next step is to account for the interaction of the wave (3) with the boundary of the 
half-space. This can be done more simply if we make the substitution of coordinates x + iy = 
(X + iY)e la (see Fig. i) and change over in (3) from the Fourier transform F in the variable 
X to the transformation ~- of the same solution in the variable x. 

Having used sq to represent the parameter of the Fourier transform in x, after recal- 
culating we find that Eqs. (3) take the form 

Lt~ t" t ? (2p ~ a~ i 2p '  
U (s, sq, y) = g~als,,+, -~.d \N-~ N~ ] (p cos a --  q) w (p) e-i'~UUdp, 

VLSr (~ sq,. y) = ~a~s . 2 ~ --" 'N ] pw(p)e--'SMU dP' 

M =  ~ - -  q cos ~ ) / s in  a ,  Ni = n~(q) s in2a  + ~ - - -  qcos  ~)~, 

{} (} U (t, x, y) ~ (t, Re (x + iy) e - ~  a Im (x + iy) e-~), 
V V 

u + tv = (U + il0e ~ .  

The l a s t  row shows t h e  f o r m u l a  f o r  t h e  t r a n s i t i o n  f rom t h e  d i s p l a c e m e n t s  U, V in  t h e  c o o r -  
d i n a t e  s y s t e m  X, Y t o  t h e  d i s p l a c e m e n t s  u ,  v a l o n g  t h e  x ,  y a x e s .  

Now knowing L~-  - t h e  t r a n s f o r m s  o f  t h e  d i s p l a c e m e n t s  in  a wave i n c i d e n t  on t h e  f r e e  
b o u n d a r y  o f  t h e  h a l f - s p a c e ,  we s o l v e  t h e  dynamic  p r o b l e m  f o r  t h e  h a l f - s p a c e  y < h t o  f i n d  
t h e  t r a n s f o r m s  o f  t h e  d i s p l a c e m e n t s  in  t h e  r e f l e c t e d  wave.  The s o l u t i o n  i s  r e p r e s e n t e d  in  
t h e  fo rm o f  i n t e g r a l s  c a l c u l a t e d  f rom r e s i d u e s .  The s u r f a c e  i n t e g r a l s  o b t a i n e d  in  t h e  c a l -  
c u l a t i o n s  can  be d i s c a r d e d ,  s i n c e  t h e y  a r e  e q u a l  t o  z e r o  f o r  t h e  moments o f  t i m e  p r i o r  t o  
t h e  a r r i v a l  o f  t h e  c r a c k  t i p  a t  t h e  b o u n d a r y  o f  t h e  h a l f - s p a c e .  O m i t t i n g  t h e s e  cumbersome 
c a l c u l a t i o n s ,  we come t o  t h e  f i n a l  r e s u l t  f o r  t h e  d i s p l a c e m e n t s  on t h e  b o u n d a r y  o f  t h e  h a l f -  
s p a c e  [7, 8] :  
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a~s"+3~ L~(s,sq,h) ~ !--I+ R +Q' !--I+ R e , 

a~sn+3v L~" (.% sq, h) = QI t -  t .-t- tt n-- 2 

( 4 )  
Ql(q) = [(na ~ + q~) sin 2a  + 2iqnl cos 2~]w(q cos a - in  x s in  ~),  

Q2(q) = [(n2 2 + q~-) cos 2a  - 2iqn 2 sin 2a]w(q cos a - in 2 s in  a)~ 

R ---- (n2Z + q 2 ) 2  - -  4q2nln2, n i 2 = ai2 + qZ 

We have underlined the terms corresponding to the transforms of the displacements in the wave 
traveling toward the boundary. 

At points of the boundary, solution (4) is valid until the arrival of secondary waves - 
waves generated by the crack and waves reflected from the boundary and then the crack, thus 
returning to the boundary. In order to account for the contribution of the secondary waves 
to the solution, it is necessary to solve a nonsimilar problem concerning diffraction of waves 
at the crack. It should be noted that due to the reduction in the amplitude of a wave as it 
travels in the medium, the contribution of secondary waves to the solution at the boundary 
will evidently be less important than the contribution of the primary waves. 

Equations (4) account for their uniformity relative to the parameters of the Laplace and 
Fourier transforms. The originals for transforms of these types can be obtained in explicit 
form [6, 9] 

t 

I - -  i'~x + h ~ (r~ ~ 0), (x~ + h2)-  1 
I[__ ixx + ih ]/r rl sgn (x) (r~ < 0.,) (5)  

m (~0 = (x~ + h~) -~ I "~h 

r 
ix (n o), 

ri = ~ - a ~ ( x  ~ + h D .  

The v a l u e s  o f  t h e  r e a l  a n d  i m a g i n a r y  p a r t s  o f  t h e  r e m a i n i n g  r a d i c a l s  s a t i s f y  t h e  i n e q u a l i t i e s  
Re n~(~a)/> 0, x Imn2(~l) ~ 0, Re nx(~2 ) i >  0, x ]m na(~  ) ~ 0: The  d i s p l a c e m e n t  v i s  c a l c u l a t e d  f r o m  
a s i m i l a r  f o r m u l a .  

We w i l l  p r e s e n t  some r e s u l t s  o f  c a l c u l a t i o n s  o f  s o l u t i o n  ( 5 )  f o r  t h e  c a s e  when t h e  
s h e a r  s t r e s s e s  r e l i e v e d  b y  t h e  p r o p a g a t i o n  o f  t h e  c r a c k  a r e  c o n s t a n t  (<0 = z0 = c o n s t ,  n = 0)  
a n d  t h e  c r a c k  t i p s  move i n  d i f f e r e n t  d i r e c t i o n s  a t  t h e  same  v e l o c i t y  (v~ = v~ = v ) .  I n  t h i s  
c a s e ,  i n  Eq.  ( 4 )  we s h o u l d  p u t  

,w (p) = (t + ~ ~)~/~, c(~)  = ~ ,  

D(v) = (4a~vZq~ ~ + a24v~)K(q2)-- 4aiZv~q~K(ql) + 8q2'E(q O -  ( 6 )  

(8q? + a#va)Ff(,q~), q~ = t - -  a?v ~. 

A graph of the function C(v) is shown in Fig. 2. Here and below, we took the following as 
the unit of measurement: the distance h from the center of the crack to the boundary; the 
velocity of the shear wave c~ = a~ ~ = i. The Poisson's ratio was equal to 0.25, so that 
cl = a~ I = /~. 

The solid lines in Figs. 3 and 4 show the change in accelerations over time on the 
surface of the half-space at the point x = I0, y = i with an angle of inclination of the 
crack a = w/4. The curves were constructed for a crack propagating at a velocity v = 0.25. 
The symbols p and s denote the moments of arrival of the fronts of the rarefaction and shear 
waves. The combination of symbols denotes 
(see Fig. i). The first symbol indicates 
cates the type of wave reflected from the 
the front of the Rayleigh wave, while spl 

the position of the fronts of the reflected waves 
the type of incident wave, while the second indi- 
boundary. The symbol R denotes the position of 
denotes a lateral wave. 

The solid line in Fig. 5 shows the displacement of this point. Dimensionless values of 
the displacements, referred to the constant C(v) = C(0.25), are plotted off the axes. Time 
was chosen as the parameter which changes along the curve. The points s and R on the curves 
denote the moments of arrival of the shear and Rayleigh waves. 
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Let us evaluate the dimensional displacements, which can be obtained by calculation. 
In Fig. 2, for v = 0.25 we have C(v) z 0.02~0/~. We approximately calculate the scale of 
the grid in Fig. 5, assuming that the origin is located at the depth h = 103 m. The spe- 
cific weight of the medium y = 1.5"10 -4 N/m 3. Evaluating the shear stresses relieved by the 
crack, we find 

0 O 0 v 0 h 5 MPa,, I Xo I --- I ffYY - -  O~x I/2 --" 5 MPa, 

It is assumed that the shear stress is completely removed. Taking the shear modulus ~ to 
be equal to 104 MPa, we find that the unit of the grid scale corresponds to the displacement 
u = C(v)h ~ i0 -z m. The units of the scales in Figs. 3 and 4 correspond to time and accelera- 
tion (c 2 ~ 3000 m/sec): t = h/c 2 ~ 1/3 sec, fi = C(v)c~/h ~ 0.i m/sec 2. 

Let us compare these results with the results found from the dislocational model of 
rupture. The changes in solution (4) concern the source functions. In the example being 
examined, the displacement of the edges of the crack 

U~F(s, sp) = w(P----!) Uo(t , XJ = 2C(v)a2v-2]iv2t 2 X ~. (7)  �9 83 ~ . 2 Y 

As an e q u i v a l e n t  d i s l o c a t i o n  s o u r c e ,  we t a k e  a d i s c o n t i n u i t y  w i t h  a d i s p l a c e m e n t  jump which  
i s  c o n s t a n t  a l o n g  i t s  l e n g t h  U = UdH(Vdt - IX[) and a s i z e  o f  jump U d ( t )  d e t e r m i n e d  f rom t h e  
condition of equality of the "volumes": 

vt  vd t  

S U~ d X =  ~ Ud(t) dX, 
- - v t  - - v d t  

from which Ud(t) = ~a~C(v)t2/2Vd and, thus, 

(8)  

ULF(S, Sp) = 0 + vd 

Comparing t h e s e  e x p r e s s i o n s  w i t h  (6)  and ( 7 ) ,  we s ee  t h a t  in  s o l u t i o n  (4)  we need  t o  r e p l a c e  
w by w d. 

Calculations performed for v d = 0.9 show that the accelerations and displacements differ 
little from the curves obtained for source (7) (the dashed curves 1 in Figs. 3-5). If the 
velocities of the discontinuity v d and the crack v are the same, then the situation is such 
as to ensure constant satisfaction not only of Eq. (8), but also equality of the mean shifts 

vt 

Uav (t) = Fvt U o (t, X) dX = -~i- '"  
- -V t  

Calculations show that the accelerations in this case are nearly the same as the values 
found for the crack. The dashed line in Fig. 5 shows the trajectory of the displacement of a 
point on the free surface. The difference between the solutions is negligible. This may be 
connected with the similar description of the two solutions. Here, the dynamics of the ex- 
change of waves between tips was established, and the high-frequency part of the spectrum is 
not as representative as in unsteady problems. 
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BRANCHING METHODS OF ANALYZING A DISTURBANCE OF THE CRITICAL-PRESSURE 

SPECTRUM OF SHELLS OF REVOLUTION AND SOME APPLICATIONS OF THESE METHODS 

V. V. Larchenko UDC 539.3:534.1 

New phenomena in the branching loss of stability of an elastic shell were discovered in 
a study conducted for a singular perturbation. It was found in particular that disturbance 
of the middle surface and the load is accompanied by a change in the type of bifurcation of 
the branch points, the rotation group of the minor equilibrium mode, and the multiplicity 
of the eigenvalues. Conditions were formulated for the functionals of the branching equa- 
tion for which the multiplicity increases to the specified value. This makes it possible to 
significantly simplify the theory of models of instability. To establish the above facts, 
it is important that the spectrum be crowded at ~ + 0 (~ is a natural small parameter with 
higher derivatives). A theoretical-empirical method of evaluatingthe effectiveness of 
electrophysical loading of thin shells was proposed within the framework of the completed 
study. 

I. Let (r, ~) be a polar coordinate system whose origin is located at the tip of a 
shallow spherical segment. We will examine the below Marguerre-Vlasov problem [1-3] in the 
space 

p2(3-~)A2w = 0AO + ~q[L(w, O) @ L(w~, ~)1 + ~ (r), (r, ~) ~ Q, 

~(h-~)A2~ = --0Aw -- pq[L(w, w) + 2L(w, w~)]/2, 

w = w '  = 0 ,  A ~ = B O  = 0 ,  r E  a~, ( 1 . 1 )  
rL(u, v) = u"Av + u"Au -- 2r-lBuBv, A( . )  = (.)' + r - l ( . ) " ' ,  

B(.) = [(.)' -- r ~ ( . ) ] i ~ ( r )  = p + 6q(r), p ~ {Pn}, [5] << i.  

Here, w is the normal displacement of the middle surface; ~ is the Airy stress function; 
~(r) is the external pressure; {Pn} is a sequence of critical pressure of a perfectly spherical dome; 
6 is the density of the pressure disturbance; U s = h/a7 is a natural small parameter; h is 
the thickness; 2a = diam Q; ?~ = 12ii -- ~2); ~ ~ (0, 0, 5) is the Poisson's ratio; 8 is a half- 
angle; w~(r, ~) is a 2~-periodic disturbance of the middle surface such that w~(r, ~) ~ :~r (Q), 
[Tnt<< 1, II~(r)llc ~ t ,  where 
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